Proceedings of the Eleventh International AAAI Conference on Web and Social Media (ICWSM 2017)

Junet: A Julia Package for Network Research

Igor Zakhlebin
SONIC Lab, Northwestern University, Evanston, IL
ANR Lab, Higher School of Economics, Moscow, Russia
izakhlebin @u.northwestern.edu

Abstract

Network science is moving at a rapid pace. However, main-
stream analytic packages often fall behind: it is too difficult
to implement new complex algorithms in them or it is hard
to make them fast. With Junet, we address this problem by
implementing a high-performance network analysis package
in a high-level language. It allows users to write concise Julia
code with performance on par with analogous C/C++ code
and have unparalleled control over memory consumption for
working with large networks.

Most network analysis packages do not allow to customize
algorithms provided with them. They implement algorithms
in low-level languages and interface them to high-level ones.
This combination provides both speed and convenience, but
also restricts users to the choices made by package develop-
ers. To implement their own algorithms, users have to dive
into complicated low-level internals or stay in the high-level
languages and suffer from poor performance.

To address this problem, we introduce Junet—a network
analysis package written in Julia, a high-level and easy to
learn language, just-in-time (JIT) compiled into machine
code with execution times close to those of C (Bezanson
et al. 2014). With Junet, users write code in the same lan-
guage as the package and it has the same high performance
as package-provided algorithms and primitives.

Usage

From the user’s perspective, Junet works much like other
network analysis libraries and has a similar syntax. It pro-
vides the means to both directly manipulate nodes, edges,
and their attributes and to run algorithms on the whole net-
work. A usage example is shown on Figure 1. It includes
loading the network, computing its node centralities, and in-
corporating them into visualization. Users can run it either
interactively (line by line) or as a script.

Out of the box, Junet provides such capabilities as: input
and output in a number of common network storage formats;
random graph generation; computing node, edge and graph
statistics; manipulating node and edge attributes; commu-
nity detection; visualization; and more. The choice of avail-
able algorithms is already broad and continues to grow.

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

731

using Junet

g = readgraph("edges.txt",
pr = pagerank (g)

kc = kcores (qg)

gl:, :size] =1 + pr = 1000
gl[:, :opacity] = kc / maximum(kc)
plot (qg)

directed=true)

V VV VYV VYV

Figure 1: Example block of Julia code using Junet.

Internal Design

From the developer’s perspective, Junet provides a number
of distinctive features compared to the other libraries. In its
development, we focus on the following three objectives.

Ease of experimentation Users should be able to easily
modify and build upon provided algorithms.

Towards this goal, Junet’s code is structured into loosely
coupled modules that depend on a common set of operations
(like node and edge addition and removal, or graph traver-
sal), most of which are directly accessible by the users. As
they learn to use the package, they simultaneously learn its
internals, which helps in writing new algorithms.

Another feature provided by Julia language is support for
hot-swapping most of the package’s method definitions from
within the users’ code. Thus, users can modify behavior of
Junet without actually modifying its source code or restart-
ing the Julia interpreter.

Performance Code based on Junet should approach exe-
cution times of analogous low-level code written in C/C++.



Table 1: Comparison of network packages in terms of memory consumption
and algorithm execution times. Marked with an asterisk (*) are versions using
all optimizations available. Two best results in each row are highlighted.

>

8 3 $ \Zj-'

O N Q¥ 3% X < S
A

Memory (MB) | 2,285 3,457 5,120 1,697 2247 591 43,343
Components (s) 35 34 225 7.9 36 28 35.5
K-cores (s) 6.2 32 394 304 95 85 3492
PageRank (s) | 222 50.6 250.2 50.1 243 17.3 6259
Clustering (s) | 22.2 2542 2669 2492 449 352 28044

The package relies on the Julia compiler to produce effi-
cient machine code. Additionally, it exploits the fact that its
code is JIT-compiled in conjunction with a multiple dispatch
mechanism built into Julia to optimize the code on a level of
entire functions. For example, all checks for graph direction-
ality happen at compile time, and pieces of code that depend
on them are automatically swapped for more efficient, spe-
cialized versions. Furthermore, many operations like graph
reversal do not change or copy the underlying data and in-
stead create lightweight views of it, which makes them very
cheap to use.

Memory efficiency Researchers often develop the algo-
rithms on their personal computers that are constrained in
RAM, so it’s important to utilize memory as efficiently as
possible. Alternatively, when used on big RAM machines,
the package should support working with as many and as
large networks as possible.

For that, Junet provides efficient container types for node
and edge attributes and automatically chooses which ones to
use depending on the user’s code. It also allows using non-
standard integer types for node and edge identifiers. Switch-
ing on a 64-bit machine to unsigned 32-bit integers reduces
memory consumption twofold, while still allowing to work
with any network under 4Bn nodes and edges. Forsaking
the ability to assign edge attributes brings consumption even
further down, for a total of about 4x reduction.

Evaluation

We compare Junet with 4 other state-of-the-art packages for
network analysis designed for high-level languages. For R,
it is igraph (Csardi and Nepusz 2006), and for Python it is
graph-tool (Peixoto 2014), SNAP.py (Leskovec and Sosi¢
2016), and NetworkX (Schult and Swart 2008). All of them
except NetworkX use low-level libraries to back up their op-
eration and the latter is entirely Python code.

Packages need to load a directed network of connections
between LiveJournal blogs (retrieved from SNAP reposi-
tory) comprising over 4.8M nodes and 68.9M edges. The
amount of RAM used to represent this network is mea-
sured along with the time it took to execute four common
algorithms: connected components, k-core decomposition,
PageRank, and computing the global clustering coefficient.
All benchmarks were run on a large-memory Linux server

732

with Intel Xeon E5-2698B processor clocked at 2.0GHz.
Results are shown in Table 1.

On average, Junet is one of the fastest packages, perform-
ing on par with igraph and graph-tool. It is worth reiterating
that unlike them, Junet is pure high-level Julia code. The
only other high-level library, NetworkX, performed on aver-
age 1 to 2 orders of magnitude worse than the rest.

Junet is also one of the best in terms of memory consump-
tion. Like SNAP.py, it supports different representations to
accommodate networks of different size and complexity, but
tends to consume 2 to 3 times less memory.

Availability
Junet is open software and is distributed under MIT license.
Its source code can be found at https://github.com/inguar/
Junet,jl. As it is written entirely in Julia, it should work on
each of Julia’s supported platforms. Currently, these include
Linux, macOS, and Windows.

During the demonstration session, we will overview the
library and offer participants to use it for analysis of large
networks either on their own computers or on specially pre-
pared and configured cloud instances.

Acknowledgments
This work is partially supported by Russian Academic Ex-
cellence Project “5-100” and Microsoft Azure for Research
Award. Author thanks Aleksandr Semenov, Petr Ermakov,
Aaron Schecter, Noshir Contractor, and other SONIC Lab
members for their feedback and support.

References

Bezanson, J.; Edelman, A.; Karpinski, S.; and Shah, V. B.
2014. Julia: A fresh approach to numerical computing.
arXiv:1411.1607.

Csardi, G., and Nepusz, T. 2006. The igraph software pack-
age for complex network research. InterJournal, Complex
Systems 1695(5).

Leskovec, J., and Sosi¢, R. 2016. Snap: A general-purpose
network analysis and graph-mining library. ACM Transac-
tions on Intelligent Systems and Technology 8(1).

Peixoto, T. P. 2014. The graph-tool python library. figshare.

Schult, D. A., and Swart, P. 2008. Exploring network struc-
ture, dynamics, and function using NetworkX. 2008.





