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Abstract

Online platforms have become the primary source of infor-
mation about scientific advances for the wider public. As
online dissemination of scientific findings increasingly influ-
ences personal decision-making and government action, there
is a growing necessity and interest in studying how people
disseminate research findings online beyond one individual
platform. In this paper, we study the simultaneous diffusion
of scientific articles across major online platforms based on
63 million mentions of about 7.2 million articles spanning a
7-year period. First, we find commonalities between people
sharing science and other content such as news articles and
memes. Specifically, we find recurring bursts in the cover-
age of individual articles with initial bursts co-occurring in
time across platforms. This allows for a ranking of individual
platforms based on the speed at which they pick up scientific
information. Second, we explore specifics of sharing science.
We reconstruct the likely underlying structure of information
diffusion and investigate the transfer of information about sci-
entific articles within and across different platforms. In par-
ticular, we (i) study the role of different users in the dissemi-
nation of information to better understand who are the prime
sharers of knowledge, (ii) explore the propagation of articles
between platforms, and (iii) analyze the structural virality of
individual information cascades to place science sharing on
the spectrum between pure broadcasting and peer-to-peer dif-
fusion. Our work provides the broadest study to date about the
sharing of science online and builds the basis for an informed
model of the dynamics of research coverage across platforms.

Introduction

As scientific research increasingly shapes public discourse
and impacts people’s decision-making, researchers are more
and more encouraged to communicate with the public (Pe-
ters et al. 2008). In recent years, social media and other
online sources have come to dominate news consumption
in general. In the U.S., more than 9 in 10 adults obtain
news at least partially online (Pew Research Center 2018),
with about two thirds getting news on social media (Shearer
and Matsa 2018). Similarly, information about scientific ad-
vances is typically obtained from social media (Hargittai,
Füchslin, and Schäfer 2018) and other online sources.
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With social transmission, and particularly online sharing,
becoming a key component of science communication, a
suite of crucial questions emerge: How is information about
scientific advances shared by users of different online plat-
forms? In what respects is the sharing of scientific findings
similar to the diffusion of other types of content like news ar-
ticles? What are the peculiarities of sharing scientific knowl-
edge? These questions are of key importance to both scien-
tists and society at large. First, as the discourse about science
is turning into an increasingly public topic, scientists rely on
people’s interest and taxpayer support to convey the value of
and receive funding for their endeavors. Second, informa-
tion overload resulting from the pace and scale of sharing
and the use of multiple online dissemination channels make
it especially hard for people to promote quality science.

This paper addresses important open questions about
(i) who shares science, (ii) when, and (iii) on which online
platforms. These basic questions have received little atten-
tion in the literature so far. Foundational work is based on
surveys with scientists publishing in prime venues and de-
scribing their findings to nonscientists who then rate the like-
lihood of sharing them (Milkman and Berger 2014). This
line of work has revealed the effect of content and linguistic
style on shareability, and it has uncovered patterns in who
is more likely to share scientific results. However, it remains
unclear how people disseminate research findings in real set-
tings given the complications introduced by the accelerating
dynamics of collective attention (Lorenz-Spreen et al. 2019)
and, most importantly, by how people navigate the ecosys-
tem of online platforms.

Despite the ubiquity and importance of cross-platform
sharing and consumption of information, they remain un-
derstudied even in the context of information diffusion more
broadly. Existing literature has looked at diffusion within
individual platforms like blogs (Adar and Adamic 2005),
webpages (Ratkiewicz et al. 2010), Twitter (Lerman and
Ghosh 2010; Vosoughi, Roy, and Aral 2018), Digg (Ler-
man and Ghosh 2010), Facebook (Cheng et al. 2014; 2016),
and Wikipedia (Keegan, Gergle, and Contractor 2013). A
few studies have looked into pairwise connections between
the media, such as news outlets and blogs (Leskovec, Back-
strom, and Kleinberg 2009), or news and Facebook (Tan,
Friggeri, and Adamic 2016). To the best of our knowledge,
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information diffusion between a larger number of platforms
has not been considered in existing publications.

There are both experimental design and technical impedi-
ments to investigating cross-platform sharing activity. The
bottleneck in terms of experimental design is to isolate a
category of content that inherently spreads though a diverse
set of online platforms. The technical challenge is then to
track this cross-platform diffusion. Studying the online cov-
erage of scientific articles successfully addresses both dif-
ficulties. On the one hand, focusing on scientific content
assures a broad coverage, since science communication is
prominent on most online platforms (Alt 2018) and users
are, at least on social media, as likely to engage with sci-
entific content as with “lighter” subjects such as entertain-
ment (Hargittai, Füchslin, and Schäfer 2018). On the other
hand, it is possible to unambiguously match posts about
a scientific article through its publication URLs and Digi-
tal Object Identifier (DOI). It circumvents the need for us-
ing error-prone heuristics to connect the posts from differ-
ent sources with widely varying representations, like group-
ing posts by potentially missing hyperlinks between them
(Adar and Adamic 2005), hyperlinks in conjunction with
text (Leskovec, Backstrom, and Kleinberg 2009), or their
image and video content (Cheng et al. 2014; 2016).

We take two complementary perspectives to studying
information diffusion between online platforms. First, we
characterize dynamics of posting activity with respect to vol-
ume of posts over time, their organization in bursts (their
typical size, recurrence and co-occurrence across platforms),
as well as time differences between the platforms as they
“catch up” on the stories. This exploration reveals several
similarities between sharing scientific and other types of
content. Second, we deduce the likely paths of information
diffusion between the users of different platforms based on
the time ordering of their posts (see Fig. 1). We analyze the
structure of inferred networks to explore connections be-
tween platforms and the specific role that they play in the
dissemination of scientific articles. The level of granular-
ity of the structural analysis enables us to address questions
that are specific to the dissemination of science within and
across platforms: (i) Who are the main spreaders of scien-
tific articles? (ii) What platforms are they using? (iii) At
what rates does information propagate between platforms?
and (iv) How does the structural virality of propagation trees
vary by the platform sharing the article first?

Our paper makes three main contributions. First, we pro-
vide a first comprehensive temporal analysis of the diffu-
sion of scientific articles online, which establishes similari-
ties between the propagation patterns of science and more
general news information. Second, our exploration of the
likely structure of information diffusion characterizes the ac-
tivity of users on various platforms, filling an important gap
in existing literature with new knowledge about the extent
to which different platforms share scientific articles. Third,
our work is pioneering in cross-referencing the spread of in-
formation across different platforms, thereby informing sub-
stantively not only the domain of science communication,
but also the broad study of information diffusion in an in-
creasingly convoluted ecosystem of online platforms.

Related Work

Understanding the structure and dynamics of information
diffusion has been a longstanding research problem in com-
munication and media studies (Katz and Lazarsfeld 1955),
marketing and management (Aral and Walker 2011), and in-
formation science (Szabo and Huberman 2010; Jamali and
Rangwala 2009; Weng et al. 2012).
Mass communication. The structure of information diffu-
sion has been in the purview of communication scholars
for several decades. Based on initial observations of radio
broadcasts and WWI propaganda, it was commonly believed
that information spread by a mass medium directly reaches
its audience’s minds, akin to a “magic bullet” or a “hypo-
dermic needle.” Subsequent empirical research argued for
a two-step flow of communication, where information origi-
nating in mass media is interpreted by opinion leaders that in
turn influence their groups (Katz and Lazarsfeld 1955). Later
research introduced additional steps into the model, defining
a multi-step flow of communication (Weimann 1982).

Recent studies of Twitter provide support to models of
both one-step, two-step, and multi-step flows of communi-
cation. In a 2011 study, 46% of content originated by “elite”
Twitter users reached ordinary users through one or more
intermediaries (Wu et al. 2011). A more nuanced analysis
based on social movement data (Hilbert et al. 2017) demon-
strated that aside of direct communication, there is also a
two-step and multi-step flows present. In this paper, we as-
sume that there is a network structure underlying the in-
formation diffusion, which allows us to capture all possible
types of flow uniformly.
Information diffusion. Following the seminal paper about
diffusion of memes between blogs by Adar and Adamic
(Adar and Adamic 2005), research has focused on detect-
ing, characterizing, and modeling information diffusion on
various online platforms. The most prominent findings are:
(1) the number of users individual messages reach follow
fat-tailed distributions (Adar and Adamic 2005), (2) collec-
tive attention on various platforms is bursty in time (Ler-
man and Ghosh 2010; Ratkiewicz et al. 2010), and (3) that
some bursts recur upon content resubmission (Lakkaraju,
McAuley, and Leskovec 2013; Gilbert 2013; Cheng et al.
2016). These results have been demonstrated for particular
individual platforms and it is not known whether they apply
to a broad range of platforms.

Fewer papers have investigated pairwise connections be-
tween the platforms. In a study on meme tracking between
news and blogs, authors found that online interest follows
a “heartbeat”-like pattern and that news outlets tend to in-
troduce the stories first, while blogs tend to catch them up
later (Leskovec, Backstrom, and Kleinberg 2009). A study
of news propagation through news outlets and Facebook has
shown that posting activity on these two media unfolds in
quick succession and that the entire news cycle typically
lasts two days (Tan, Friggeri, and Adamic 2016). While pro-
viding important insights about information diffusion on-
line, these studies have only considered a small subset of the
biggest online platforms. This paper aims to cover a much
broader portion of the Internet landscape.
Science communication online. While considerable re-
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Table 1: Descriptive statistics of posts from different plat-
forms covered by our data sample.

Platform # Posts # Users Posts / User Posts /
Month50 pct. 99 pct.

Twitter 52,678,741 4,708,238 1.0 149.0
Facebook 4,054,074 768,330 1.0 64.0
News 3,515,060 2,415 212.0 18,396.8
Blogs 1,245,887 7,043 17.0 2,886.4
Wikipedia 1,042,806 89,251 2.0 94.0
Google+ 750,217 160,323 1.0 52.0
Reddit 138,723 30,299 1.0 40.0

Total 63,425,508 5,765,899 1.0 138.0

search has looked at how people use the Internet for sharing
and engaging with various types of content from celebrity
news to politics, very little of this work has considered how
non-specialists interact online with science and research ma-
terial (Bauer 2012; Brossard 2013; Hargittai, Füchslin, and
Schäfer 2018). According to a recent report by the National
Science Board, the Internet has become the most widely
used source of science information among Americans (Beer-
ing and others 2014). Yet, literature on how science is pre-
sented online and how users interact with it is still budding;
for a few exceptions, see (Brossard 2013; Scheufele 2013;
Su et al. 2015). These studies highlight the importance of
online platforms in accessing, interpreting, and discussing
scientific material and call for more in-depth analyses of cur-
rently understudied areas of science communication.

Finally, there is a growing body of work that analyzes on-
line communication about science in relation to particular
events, e.g., conferences (Reinhardt et al. 2009) and focus-
ing on, e.g., papers in specific journals (Robinson-Garcia et
al. 2017). In this work, we attempt to reconstruct a maxi-
mally complete picture of information diffusion about sci-
entific articles that is not confined to a particular platform or
domain of knowledge.

Diffusion Modeling Framework

In this section, we present the used data and define notions
to describe information diffusion in the rest of the paper.

Dataset Description

We have requested a recent data snapshot from Altmet-
ric LLC1, the largest service that tracks mentions of research
outputs on the Internet. The particular advantages of us-
ing this data is its breadth, high granularity, and large time
span (Alt 2018). It covers many types of research outputs
such as journal articles, conference proceedings, book chap-
ters, books, and reports. The wide range of Internet sources
being tracked includes news outlets, blogs, Twitter, Face-
book, Google+, Reddit, and Wikipedia. The data from these
sources have been systematically collected since mid-2011.

We consider users of online media, i.e., individuals and
organizations who make public posts talking about scientific
advances. Due to the lack of a reliable way to determine the
exact authorship of posts on news websites and blogs, we

1https://www.altmetric.com/research-access/

consider all news outlets and blogs individual “users” who
represent their respective organizations. Twitter, Facebook,
and Google+ users consist of a mix of individuals and orga-
nizations, while Reddit and Wikipedia only encompass indi-
viduals. In case of Wikipedia, the user of interest is the page
editor who has first referenced the given scientific article.

We consider the users of different platforms as separate
entities, despite the fact that, in reality, individuals and or-
ganizations might have accounts on multiple platforms. For
example, journals like Nature own both a news outlet as well
as profiles on Twitter, Facebook, and Google+. Matching re-
liably all such users across platforms would be difficult and
would probably lead to loss of data. However, given that our
method implicitly accounts for dependencies between users,
as described in the “Inference of Diffusion Structure” sec-
tion, if users consistently post the same content on differ-
ent platforms in quick succession, we automatically connect
them with edges in the information diffusion network.

When the user includes a link to the scientific article in
their post, a mention is recorded. Our data includes only
posts with such mentions. On platforms where users are al-
lowed to repost publicly (Twitter, Facebook, and Google+),
such reposts are also recorded. The data, however, does
not include activity that happened “in response” to origi-
nal posts, such as social media replies and reactions, unless
such responses also include a direct link to the article. This
selection criterion allows us to efficiently track how users
mention the articles across different platforms.

We pre-processed the raw data dump from Altmetric and
selected a sample that covers activity on 7 major online
platforms over 7 years (June 10, 2011 – June 10, 2018). It
included information about over 7.2 million research out-
puts that were mentioned at least once during that time pe-
riod, about 63.5 million posts that mention them, and over
5.7 million users who wrote them. Of all research outputs,
75.1% were mentioned on a single platform (predominantly,
Twitter), 17.6% on two platforms, and the remaining 7.3%
on three different platforms or more. This means that we are
able to study over half a million articles that were mentioned
on three or more platforms.

Descriptive statistics of posts on different platforms and
the users who wrote them are shown in Table 1. The largest
number of posts across all platforms as well as the biggest
number of unique users belong to Twitter, followed by Face-
book. Next, according to the number of posts, are online
news outlets and blogs. Throughout all platforms, we ob-
serve a large inequality in participation. As is the case with
many Internet systems (Matei 2017), most users contribute
just one post (except news and blogs, which are represented
by organizations and not individuals), while a small frac-
tion of them (on the order of 1%) contributes many dozens.
With news outlets, there is a considerable reorganization in
data provided by Altmetric, namely, around 2016 they have
greatly expanded a list of news outlets they track.

Modeling Information Diffusion

Online activity around a scientific article typically unfolds in
multiple stages. Typically, the article first appears online at
its publisher’s website. It can be automatically re-broadcast
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Figure 1: Information cascades propagate along the edges of
unobserved diffusion network that includes users of different
platforms. When information reaches individual users, they
post on their respective platforms, generating sequences of
posts that are ordered by publication time.

by other websites that systematize papers from specific do-
mains and provide a more convenient access to them (e.g.,
PubMed and F1000 Prime). These websites together provide
a set of seed URLs that could be used to reference the article.
Online users who have learned about the article directly can
then use those URLs to link to the article in their posts. Over
time, other users see these posts and learn about the article.
Some of them would want to share it with their followers
and they will post about it themselves. Yet others will see
both old and new posts and repeat the process (cf. Fig. 1).

This process is commonly known as formation of an in-
formation cascade (Easley and Kleinberg 2010). In our case,
public posts of some user can cause other users to post,
which, in cascading fashion, can cause yet others to post. Al-
though we don’t know the exact structure of how the infor-
mation spreads within such cascades, we can build heuris-
tics: if user A posted before user B, it is likely that A has
learned about the article before B and might have influenced
B to post, while the contrary is unlikely. Thus, online post-
ing activity about scientific articles can be used as a proxy
for studying underlying information cascades.

Our model of information diffusion is based on the in-
dependent cascade model (Goldenberg, Libai, and Muller
2001) and network inference methods (Leskovec, Back-
strom, and Kleinberg 2009). It makes the following choices.
First, we assume that there is a static underlying diffusion
network between the set of users V . This network spans
all platforms and can be modeled as a directed graph D =
(V,E) that represents who exerts influence on whom, or,
conversely, who seeks information from whom. Second, we
assume that information cascades can only propagate along
the edges of this diffusion network c ∈ C : Vc ⊂ V,Ec ⊂
E. When user u posts about an article, each user v influ-
enced by u in D can post as well with some probability that
depends only on the properties of u and v, and is indepen-
dent of other nodes. Information cascades are thus formally
forests, whose individual trees do not interfere with each
other. Additionally, individual information cascades do not
interact and propagate regardless of each other. Our third as-

Figure 2: Mentions of the paper “United States Health Care
Reform: Progress to Date and Next Steps” by Barack Obama
on different online platforms one year since its publication
date. Detected peaks of ten or more posts per day are marked
with stars (�� ).

sumption is that when users propagate information, they link
directly to the seed URLs. This modeling decision allows us
to resolve the problem with some users linking directly to
the scientific source (e.g., Wikipedia editors), while others
use the built-in reposting capabilities of their platform (e.g.,
Twitter users). Reposts are thus considered independent new
posts containing a link to the article.

This model is illustrated on Fig. 1. Users of various
platforms propagate information about scientific articles
amongst each other, forming information cascades related
to individual articles. Upon receiving the new information,
each user posts on their corresponding platform, together
producing the time-ordered sequences of posts spanning dif-
ferent platforms. Our goal for the rest of the paper is to ad-
dress the posed research questions based on this information.

Dynamics of Diffusion

To systematically characterize how scientific articles are
talked about online, we first analyze when and on which
platforms are they mentioned. Are they associated with sim-
ilar dynamics of posting activity to other types of content
like news articles, photos, or videos?

To illustrate our set-up throughout this investigation, we
order posts about an article by time to form a histogram
of how much it was mentioned on different platforms over
time (see Fig. 2). This histogram demonstrates three com-
mon traits of information diffusion w.r.t. time: (1) posting
activity tends to peak early on all media, (2) it is organized in
sequences of bursts, and (3) initial bursts have a tendency to
co-occur on different media within a couple of hours. These
observations motivate the analyses to follow.

Temporal Variation

To understand how posting activity varies across time on dif-
ferent platforms, we look at the first year of activity on each
platform for individual articles, counting from the time of
their first mention on any platform. We estimate the proba-
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Figure 3: Probability of a post on each platform during the
year after the first post about the article.

bility distribution of a post occurring during that time win-
dow with a Gaussian kernel density estimator with band-
width computed by Scott’s method (Scott 1992) as shown
in Fig. 3. Across all platforms, most of the posting activity
happens during the first three days after the first post, then
it decreases until it reaches a low plateau. Although there
may still be local peaks in posing activity for individual ar-
ticles, they appear at a much lower rate giving birth to the
said plateau. KL-divergence values between these probabil-
ity distributions reveal an inherent organization of platforms
into groups. The first group can be characterized as “break-
ing news” platforms, such as news outlets, Twitter, and Face-
book (intra-group DKL ≤ 0.01). The second group consists
of blogging platforms, such as blogs, Google+, and Reddit
(DKL ≤ 0.05). Finally, Wikipedia forms the third group that
is considerably different from the rest.

Burstiness

It has been shown before that posting of web links (URLs),
news, photos, and videos on certain platforms is organized
in bursts (Adar and Adamic 2005; Lerman and Ghosh 2010;
Cheng et al. 2014; 2016). Here, we demonstrate that bursty
behavior is typical for dissemination of scientific articles as
well, across all considered platforms.

Temporal activity is considered to be bursty if inter-event
times follow a fat-tailed distribution (Barabási 2005). To test
for burstiness, we computed time intervals between posts for
a year after the first mention of each article. We fitted the
distribution of those intervals against a range of possibil-
ities such as exponential, power-law, lognormal, and trun-
cated power-law distributions (Clauset, Shalizi, and New-
man 2009). In all cases, exponential and power-law distribu-
tions were rejected in favor of truncated power-law or log-
normal distributions. For each platform, except Wikipedia,
the truncated power-law represents a significantly better fit
(p < 10−4). The power-law exponent ranges from 1 for
Facebook and blogs to 1.159 for Google+, 1.183 for Twit-
ter, 1.206 for Reddit, and 1.34 for news sites. These values
are consistent with previous measurements of other bursty
online systems (Barabási 2005). In case of Wikipedia, the
lognormal distribution represents a significantly better fit
(p < 10−6). When time differences are measured in sec-
onds, parameter values for Wikipedia are μ = 16.584, and

σ = 0.423. These values are similar to the ones obtained
for Digg website (Doerr, Blenn, and Van Mieghem 2013;
Blenn and Van Mieghem 2016).

Recurrence of Bursts

To detect individual bursts, we use the method and param-
eter choices from (Cheng et al. 2016). Since the shapes of
bursts can vary widely, the simplest way to identify them is
by their peaks. We define each burst as a spike in the num-
ber of posts in a given day compared to the the days that
surround it. Following (Cheng et al. 2016), we detect a burst
whenever the daily number of posts is at least h0 = 10, no
less than twice the average number of daily posts, and is a
local maximum within a window of ±w = 7 days. Addition-
ally, the number of posts per day between the two adjacent
peaks should drop below the half of smaller peak’s height.

Similar to (Cheng et al. 2016), we observe that bursts
within each platform routinely occur more than once, i.e.,
they recur. The probability of recurrence given that the first
burst has been observed is different for each platform: 14.3%
for Twitter, 11.6% for Wikipedia, 5.9% for Facebook, 5.6%
for news, 4.1% for Google+, and 0.88% for blogs. The over-
all number of bursts in different platforms are shown on Fig.
4A. Accordingly, the number of articles with k bursts de-
creases with k. Burst counts for the most active platforms
(Twitter, news, Facebook) decrease sublinearly under log-
transformation. This indicates that the probability of a k+1-
th burst, once k bursts have been observed, decreases with k.
This confirms the findings previously obtained on Facebook
alone (Cheng et al. 2016) and shows that they hold up on
other platforms.

Recurring bursts become smaller and less frequent: their
size (Fig. 4B) typically decreases over time, and they re-
cur about one month apart, or longer for subsequent bursts
(Fig. 4C). Twitter, Facebook, and Google+ all exhibit this
pattern. It is likely driven by collective attention that decays
over time with novelty of the content, so it attracts less refer-
ences (Wu and Huberman 2007). Interestingly, news outlets
and Wikipedia follow a different trend than other platforms.
For them, burst sizes and distances lack clear dependence on
recurrence. This suggests that the intensity of posting activ-
ity on these two platforms does not strongly depend on the
novelty of information. This poses contrast to the previous
findings from (Cheng et al. 2016) and shows that they do not
apply to two out of five platforms considered here.

Bursts Linked across Platforms

Next, we investigate the succession of bursts on different
platforms to explore their characteristic “catch-up times”.
Specifically, do bursts happen at the same time across mul-
tiple platforms or are there any delays that could make one
platform preferable over another for potential science mar-
keting endeavors?

To answer this question, we order the time of occurrence
for all the bursts associated with an article on different plat-
forms. Then we identify adjacent bursts as linked if they are
no more than Δw = 3 days apart. Replication with values
of Δw in the range of 1, . . . , 5 produces the same results
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Figure 4: Histograms of: (A) numbers of bursts on each platform during one year since the first mention, (B) median number
of posts in kth burst’s peak for each platform, and (C) median distance in days between subsequent bursts.

Figure 5: Fraction of linked bursts on different days.

Figure 6: Probability distribution of bursts occurring on each
platform during first 50 hours after the first mention.

as described below. Since we use Δw < w for burst de-
tection, it is guaranteed that linked bursts are from different
platforms. Then we find the fraction of linked bursts in the
overall number of bursts happened on that day (Fig. 5).

In general, there is a low probability that burst on one
platform will be accompanied by a burst on other platforms
(around 3% for any period after 15 first days). However, one
day after the initial mention this probability jumps to 15%
from the initial 6%. Given that only 17.6% of articles are
ever mentioned on more than one platform, we argue that ap-
proximately one day after the first mention there is a strong
tendency for bursts to be linked across platforms. This is a

novel finding that establishes the time frame for which it is
meaningful to look for linked bursts.

Platform Catch-up Times

Finally, we want to determine the speed at which the in-
formation about scientific papers reaches the different plat-
forms and causes bursts of posting activity. For that, we an-
alyze the relative positions of linked bursts during the three
days since the initial post about the paper on any platform.
In this time frame we have enough data to study bursts on
an hourly scale. Switching to his granularity allows us to de-
termine which platforms start mentioning research outputs
earlier, and which of them — later.

We re-run the burst detection algorithm with a new time
window of one hour. To adjust for smaller numbers of posts
and prevent “bunching” of bursts together, we select new
values of h0 = 5 and w = 10. For every detected burst,
we record the hour of its peak. Then we aggregate these val-
ues by calculating the frequency-based empirical probabil-
ity of a burst happening in each platform within hourly time
frames (see Fig. 6).

News outlets are the fastest to reach the peak in ap-
proximately 12.75 hours after the first mention, followed
by blogs (17.5h), Twitter (17.75h), Facebook (18.75h),
Google+ (20.25h), Reddit and Wikipedia (23.5h). These
timings suggest a pattern for diffusion of information be-
tween the platforms: after a burst is observed on one plat-
form, it can propagate to other platforms with longer catch-
up times. Although we used a substantially different method,
our results are similar to previous observations or informa-
tion hand-off from the literature. Leskovec et al. found that
the hand-off of information from news to blogs happened
with 2.5h gap for a broad range of memes (Leskovec, Back-
strom, and Kleinberg 2009). We extend estimation of catch-
up times to all 7 media and allow for direct comparisons
between all of them.

Inference of Diffusion Structure

To explore the propagation of scientific articles between dif-
ferent platforms and to better understand the peculiarities of
sharing science, we reconstruct the network of information
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Figure 7: Underlying principle of NETINF: the more cas-
cades ci with user A posting shortly before user B, the more
likely a diffusion link A → B is.

diffusion based on the observed sequences of posts on dif-
ferent platforms. We evaluate the resulting network on a set
of ground-truth data and check robustness of our results.

Network Inference Algorithm

To reconstruct diffusion network, we use NETINF, an effi-
cient algorithm for network inference (Gomez-Rodriguez,
Leskovec, and Krause 2012). NETINF models posting ac-
tivity for each article through information cascades, one per
article. The structure of cascade c shows the likely path of in-
formation transfer. The posting activity associated with c is
described by a vector of timestamps at which the users have
posted (t1, . . . , t|V |). The task of network inference is then
to determine the most likely diffusion structures for all cas-
cades given the sequences of post timestamps. As its main
heuristic, NETINF uses (i) the number of cascades where
pairs of users have participated together combined with (ii)
differences in their posting times (see Fig. 7 for illustration).

Each information cascade c is considered to be a subgraph
of a static diffusion network D = (V,E). Each node in
the cascade, i.e., each user who has posted, can only have
one “parent” node, from which it received information about
the article before posting itself. Cascade c thus belongs to
Tc(D), the set of all subgraphs of D that are forests and
contain the nodes of c.

The probability of information transmission between
users A and B depends only on the time difference between
their posts ΔtA,B = tB − tA. Specifically, Pc(A,B) ∝

1
ΔtαA,B

, since power-law distribution agrees the most with

our data. Additionally, there is a small probability ε = 10−8

that a transmission of information would happen between
any pair of users at random.

For each cascade, only the most likely propagation
subgraph T ∈ Tc(D) is considered, i.e., P (c|D) ≈
maxT∈Tc(D) P (c|T ), where P (c|T ) ∝

∏
(u,v)∈T Pc(u, v).

Since cascades are assumed to be independent of each other,
the probability of all cascades given diffusion network can
be found by P (C|D) =

∏
c∈C P (c|D). The optimization

problem that NETINF solves can be formulated as finding
the network D that maximizes this P (C|D). Since this prob-
ability monotonically increases with addition of new edges
to D, an additional constraint is added that the diffusion net-
work should not contain more than k edges:

D̂ = argmax|D|≤kP (C|D).

The algorithm greedily optimizes for P (C|D): at each it-
eration, it considers the probability gains from adding each

possible edge e = (u, v) such that ∃c : tu ≤ tv , and adds an
edge with the largest gain to D. Gains are computed as the
sum of differences in log-likelihoods of individual cascades∑

c∈C logP (c|T ∪ e)− logP (c|T ).
Although the ground truth diffusion network may be not

static, NETINF deals with temporality implicitly. If for a suf-
ficiently long period of time, two users consistently post one
after another, an edge will likely be inferred between them,
even if this pattern of activity stops afterwards. Given that
we evaluate the results of network inference based on the
entire time period, we should be able to recover a large por-
tion of the most likely influences.

Evaluation

To run NETINF, we selected the top 1,000 posters from each
platform, for a total of 7,000 users. To help exclude social
media bots and spammers, we determined top users by the
number of unique scientific articles they mentioned. We only
considered cascades with at least two top users participating
in them, which yielded 1,784,540 cascades, by the number
of articles. Using the timestamp vectors of selected cascades
as an input, we inferred 100,000 most likely diffusion edges
between the top users.

To obtain baselines for the quality of the inference, we
also generated a set of benchmark networks with the same
number of nodes and edges and compared them with results
of the NETINF algorithm:
• RANDOM — an Erdős-Rényi random network with all

edges having the same probability of existence. It shows
the results of guessing the edges at random.

• NAIVE — a network with edges (A,B) that could
have participated in the largest total number of cascades
(ΔtA,B > 0). It demonstrates a simple approach based on
the knowledge of who usually posts after whom.
To validate the results of network inference, we compare

them with ground truth data about known connections be-
tween users. We collected all posts belonging to our data
sample that were authored by selected top users of Twitter
and Facebook. If one of the users reposted or linked to posts
of another user within the same platform at least once, we
considered the two to have a diffusion link between them in
the ground truth network:

• TWITTER — our data contains over 700K pairs of posts
retweeting, quoting, or linking to one another that identify
over 19,5K unique connections between Twitter users;

• FACEBOOK — more than 101K posts are reposts or con-
tain links to other posts, which allows us to detect 1,544
unique connections between Facebook users.

Although this way of determining ground truth connec-
tions is not perfect, it is the best available option given that
both Twitter and Facebook severely limit access to infor-
mation about their users’ followers and friends. Our proce-
dure for building the ground truth networks worked better
in the case of Facebook than Twitter, because Twitter au-
tomatically links reposts to the original post, regardless of
the actual trajectory of the tweets. We find that stricter defi-
nitions of connections between the users of these platforms
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Table 2: Evaluation results of generated networks.
Dataset Method F1max kmax

TWITTER
RANDOM 0.002 99,443
NAIVE 0.100 99,845
NETINF 0.361 78,491

FACEBOOK
RANDOM 0.000 —
NAIVE 0.045 86,267
NETINF 0.495 71,977

(e.g., two or more posts linking to each other) lead to similar
results.

Results

The ground truth networks contain only a subset of nodes
of the inferred network. Precision and recall are thus mea-
sured based on connections between the nodes that belong
to ground-truth networks. Since the NETINF algorithm can
infer arbitrary many edges, its precision and recall may vary
greatly with the number of inferred edges k. With addition of
the first edges, the precision is high and recall is low. Adding
more edges makes precision decrease and recall to increase.
To balance these changes, we use F1-score. With addition
of edges, the score increases until it reaches its maximum,
and then starts to decrease. Table 2 reports the maximum
F1-scores and numbers of edges kmax at which they were
achieved.

In all cases, NETINF performs much better than both
benchmarks according to their maximum F1 values. It also
achieves its maximum performance with smaller number of
edges kmax. Even though NETINF performs substantially be-
low a perfect score of 1.0, the results indicate a successful
reconstruction of the underlying diffusion structures for both
ground truth networks. Network inference is a hard problem,
where a random guessing approach and a simple heuristic
perform extremely poorly in comparison. We also expect
that the differences in the accuracy on the two data sets are
tied to the differences in completeness of the ground truth
networks obtained from Facebook and Twitter, respectively.

Additional Tests and Robustness Checks

As a robustness check, we studied how the inference results
depends on the time frame covered by the selected data. We
limited the posting activity to first two years (2011–2013)
and last two years (2016–2018) of data and inferred 75,000
most likely diffusion edges based on each subsample. We
chose the threshold based on the kmax values reported in
Table 2. The evaluation against TWITTER and FACEBOOK
ground truth networks produced the following F1max values:
0.189 and 0.074 for the first two years, and 0.301 and 0.483
for the last two years. Accordingly, using the first two years
of the data does not provide results in agreement with the
7-year sample. During 2011-2013, Altmetrics was setting
up their system and we expect thus that this time frame is
the least reliable part of our data. When we use the last two
years, however, the results are qualitatively similar to the 7-
year sample. As we discuss in data description, the only no-

Figure 8: Distributions of coreness values in the inferred dif-
fusion network for top 1,000 users of each platform.

table difference between the subsample and the entire data is
the fact that in 2015 (see trends shown in Table 1), Altmet-
rics expanded their coverage of news. Hence, we see an in-
creased prevalence of news users in the cascades, which also
means that news become the source of information more of-
ten than before and have a higher coreness in the network
(see “Structure of Diffusion” for more details).

We have also considered extensions of NETINF algorithm
that encounter additional factors such as full text content of
posts and hyperlinks used in them by extending the formu-
lation of diffusion probability Pc(A,B). However, such ex-
tensions improved the accuracy of results only marginally
(≤ 1%), which is incommensurate with their complexity.
The inference was dominated by the number of cascades that
each edge could potentially participate in, similar to the way
the NAIVE benchmark operates.

Structure of Diffusion

The inferred diffusion network has the level of granularity
to enable tackling questions that are specific to the dissemi-
nation of science within and across platforms about who are
the main spreaders of scientific articles and what platforms
are they using. Additionally, we can also quantify the fre-
quency of transmissions between platforms as well as study
the interplay between broadcasting that results from, e.g.,
press releases, and actual peer-to-peer spreading of scientific
articles.

Positions of Platform Users

First, we investigate the most prominent users in the in-
ferred network. Table 3 shows users with the highest out-
degrees for each platform, i.e., the number of outgoing dif-
fusion links for users within individual platforms. These
findings show that some of the most active users are large
professional outlets like Nature, EurekAlert!, and PsyPost,
as well as some individuals. Different areas of knowledge
are well represented, notably, medicine, psychology, and
physics, among others.

We further inquire whether users of different platforms
systematically differ in terms of their positions in the net-
work. First, we compute the coreness value of each user
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Table 3: Top users by out-degree in the inferred network.
Rank News Blogs Twitter Facebook Google+ Reddit

1 EurekAlert! I F***ing Love Science @NatureNews Nature Alex Psi officialcitral
2 MedicalXpress Neuroscience RSS Feeds @uranus 2 NatureNews Tim Cannon burtzev
3 Phys.org ZME Science @animesh1977 JAMAJournal Nature News & Comment starspawn0
4 Yahoo! News PsyPost @EricTopol NatureReviews Jay Cross anutensil
5 Medical News Today Sci-News.com @JAMA current TheConversationUS Nature mvea

Figure 9: Structural virality of individual propagation trees.
Histogram color denotes whether the tree has been started
by organization or individual. Examples show the different
tree structures with different values of the Wiener index.

through a repeated pruning of the diffusion network based
on degree, such that in the k-core of the network, every user
has at least k connections. Then, we aggregate coreness val-
ues by platform. We choose coreness to describe the position
of users in the network, because it is a robust measure that
can counteract local noise in the inferred network. Unlike
centrality indices and indicators depending on paths, core-
ness is more stable to changes in individual connections.

As Fig. 8 shows, there is a split in the typical coreness of
users of different platforms: Twitter users and news outlets
have a considerably higher coreness than most users of other
platforms. It means that the diffusion network has a core-
periphery structure where news organizations and Twitter
users belong to the tightly connected core of the network,
while the rest lay closer to the periphery. Within this struc-
ture, information can propagate sequentially, akin to a multi-
step flow of communication, where users from different plat-
forms participate at different steps of the flow. The closer
one seeds information to the core, the more opportunities
information has to propagate to peripheral nodes. Accord-
ingly, we expect on average Twitter users and news outlets
to be more influential than users of other platforms.

However, we notice that there are outliers on all platforms
with high coreness values (≥ 30). These users can compete
with Twitter and news in terms of influence. It also means
that users of most platforms are represented across all core-
ness levels and, consequently, steps of communication flow.

Structural Virality

Previous analyses have equated posting with information
diffusion. To test whether the initial stages of a cascade

Figure 10: Structural virality of individual propagation trees,
grouped by the platform on which initial post was made.

reflect less actual diffusion across platforms and rather ef-
forts by publishers, we use the concept of structural viral-
ity to place inferred cascades on the spectrum between pure
broadcast and person-to-person spreading (Goel et al. 2015).
Then, we compare the typical structures of cascades initiated
by individuals and organizations.

Each cascade consists of one or more trees. The root of
each tree is the user who started the information diffusion
and the edges show how information has been propagat-
ing between users. Such trees have a wide range of possi-
ble structures, with structural virality being an established
way to characterize them. This measure is calculated effec-
tively through the Wiener index originating from mathemati-
cal chemistry and is defined as the average distance between
all pairs of nodes in a diffusion tree. Denoting the distance
between a pair of nodes i, j in a tree T with n nodes as dij ,
the index is defined as:

WI(T ) =
1

n(n− 1)

n∑

i=1

n∑

j=1

dij (1)

Smaller values of WI correspond to conditions where in-
formation was spread in a single, possibly large, broadcast,
while bigger values stand for a viral diffusion, where infor-
mation was propagated by different users in multiple steps,
with each user responsible for only a fraction of all sharing.
For instance, WI < 2 characterizes trees with star structures,
where all nodes are directly connected to the root. With
larger values of WI, tree branching becomes more complex.
Finally, large values of WI denote propagation trees that are
chain-like, where information has been passed on sequen-
tially in multiple steps.

The structural virality of all propagation trees is shown on
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Figure 11: Number of times the information has propagated
from each source platform to target platform based on the
inferred propagation trees.

Fig. 9. Accordingly, viral dissemination of research articles
is orders of magnitude less likely than a direct broadcast.

To better describe the role of individuals and organiza-
tions in the propagation of scientific articles, we automati-
cally classify users based on the following heuristic: We split
the screen name into tokens using spaces and capitalization
of words, and check them against a comprehensive list of
first names from different countries2. If one of the tokens
matches a known name, the user is considered an individual,
and otherwise — as organization.

We find that diffusion started by organizations tends to be
more structurally viral than the one started by individuals
and that they both follow the same general pattern. This is a
surprising finding, since organizations have mostly been as-
sociated with broadcasting, while users are an integral part
of viral sharing. Yet, organizations involved in sharing sci-
ence have the necessary platform infrastructure and public
acceptance that attracts the attention of online users.

After grouping the users who made the initial posts by
the platform they used (Fig. 10), we see that the propagation
trees started by news outlets have by far the highest median
virality. They are followed by cascades started in Google+,
Reddit, Twitter, and Facebook. Notably, there are outliers
in most platforms, indicating that the diffusion of science
occasionally becomes viral, regardless of the platform where
it was seeded.

Diffusion across Platforms

To better understand how information spreads between the
platforms, we analyze information cascades that traverse
them. For each pair of platforms, we count the number of
times the information has spread from a user of one platform
to a user of another platform according to the inferred prop-
agation trees. This gives us the counts presented in Fig. 11.
These numbers correspond to the number of pieces of infor-
mation transferred between the platforms. They don’t cor-
respond to individual papers, as information about a single

2Name lists taken from https://github.com/alt-code/Research/
tree/master/SimpleGenderComputer/namelists .

Figure 12: Percentage of users from different platforms at
different levels of inferred propagation trees (on a log scale).

paper might get transferred across the same pair of platforms
or within the same platform multiple times.

Most of the time, the source of information is Twitter
users (over 2 million times) and news outlets (over 1.5 mil-
lion). These two platforms exert the largest influence on the
others, similar to conclusions of our analysis of user core-
ness. The data also shows that Wikipedia appears to be a
“sink” for information from other media. Yet, its full influ-
ence is likely to be underestimated in our data.

In the case of Twitter, news, Google+, and Wikipedia,
scientific articles are typically shared within the same plat-
form. Other platforms, however, indicate interesting trans-
missions. For instance, articles propagate more commonly
from Facebook and Reddit to Twitter, and these platforms
are in turn most influenced by Twitter. Similarly, blogs in-
fluence news outlets more often than other blogs, and they
are in turn most influenced by news. These asymmetries
are caused in part by the differences in posting frequencies
across platforms: Twitter users are more active than Face-
book and Reddit users, and news publish more regularly than
blogs. Note that this result provides conservative estimates
of the asymmetries between sharing within and across plat-
forms, because we based it on the activity of 1,000 most ac-
tive users from each platform. Extrapolating it on more users
per platform will likely reveal larger heterogeneities.

Finally, we ask which users start sharing articles, i.e., rep-
resent the root nodes of cascades, and who keep the prop-
agation going. We denote the users who start the informa-
tion diffusion as Level 1, the ones who received information
directly from them as Level 2, and so on. In Fig. 12, we
plot the proportion of users from different platforms at each
level of the propagation trees. For example, out of the users
at Level 1, 70% are from Twitter, 16.7% from news outlets,
7.5% from Facebook, 4.3% from blogs, and less than 2%
from other platforms combined.

Taken together, Twitter and news account for more than
80% of users at each level, but their percentages change.
The proportion of Twitter users drops to 23.9% by Level 5,
while the share of news outlets grows to about 64%. Thus,
original posts about scientific papers tend to appear on Twit-
ter, but due to the lower virality of the cascades originating
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from this platform, they stop before reaching further levels.
On the other hand, news tend to generate the most viral cas-
cades. Combined with the tendency of news outlets to pri-
marily influence other news outlets, this increases their share
in further levels. Other platforms have much lower propor-
tions of users across all levels, and their dynamics is largely
determined by the activity within them and their interactions
with Twitter and news outlets.

Discussion

The dissemination of scientific findings impacts public opin-
ion and policy. Yet, it is unclear what role users on on-
line platforms play in generating and spreading information
about scientific advances. Moreover, our knowledge about
how any type of information diffuses across various online
platforms is still rudimentary. To fill this gap, we studied
here posts about 7.2 million scientific articles from a selec-
tion of seven online platforms. We make a number of con-
tributions that corroborate and build upon discoveries from
existing literature.

In a series of papers exploring dynamics of posting ac-
tivity within individual platforms, it has been shown that
such activity is organized in bursts that occasionally re-
cur (Gilbert 2013; Cheng et al. 2014; 2016). These results
replicate in the dissemination of scientific articles and hold
in case of most platforms we consider. However, we also
highlight important exceptions. Notably, news outlets and
Wikipedia do not conform to the common tendencies of cas-
cade sizes and inter-cascade time gaps. Furthermore, when
we link bursts across platforms, we discover that bursts on
different platforms tend to happen with specific time offsets
after the initial mention of a scientific article.

Additionally, in a study about meme tracking across news
websites and blogs (Leskovec, Backstrom, and Kleinberg
2009), it was found that online news outlets introduce sto-
ries first and blogs catch up later. In this paper, we reproduce
this pattern and extend it to other platforms, determining the
relative timing of bursts in every one of them.

In relation to different theories about the flow of commu-
nication, we uncover that both individuals and organizations
participate in dissemination of scientific information online.
We find that posts about scientific articles can originate on
various platforms, but their structural virality depends on the
source platform and on whether the user is an individual or
an organization. In general, the content originating on news
outlets is associated with higher virality than the one created
by other platforms; and organizations tend to produce more
viral content than individuals. Furthermore, there are sys-
tematic trends in the rates of information transfer between
different platforms, which also determine where scientific
articles are shared at different stages of the diffusion.

In the domain of disseminating science online, we move
beyond the commonly studied question of popularity of sci-
entific articles (Robinson-Garcia et al. 2017; MacLaughlin,
Wihbey, and Smith 2018). With the aim to uncover how on-
line platforms and individual users communicate with each
other, we provide a framework for studying information dif-
fusion across multiple platforms, which opens up avenues

for a holistic investigation of online phenomena in a broad
ecosystem of platforms.

The directions for future work are twofold. So far, we
have examined temportal and structural aspect of informa-
tion diffusion across multiple platforms. In future work, we
plan to focus on the content of posts to see how it changes
thoughout this diffusion process and how diverse is the over-
all coverage of scientific advances. On the other hand, we
plan to further study whether the online posting activity con-
tains collective intelligence signals that would be useful for
evaluation of scientific articles themselves. This could po-
tentially be used to create more robust mechanisms for col-
lective evaluations of research outputs, in the spirit of re-
search on altmetrics.
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